

SYLLABUS DE ASIGNATURA: 513343

Unidad Académica Responsable: Departamento de Geofísica

CARRERA a las que se imparte: Geofísica

MÓDULO:

I. - IDENTIFICACIÓN

Nombre: Modelación Numérica de la Atmósfera								
Código: 513343	Créditos: 3	Créditos SCT: 6						
Prerrequisitos: 513336 – Dinámica de Fluídos Geofísicos								
Modalidad: Presencial Calidad: Electivo Duración: Semestral								
Semestre en el plan de	Geofísica - 3229220601							
estudios: VII								
Trabajo Académico : 5 horas no-presenciales, 5 horas de trabajo personal por semana								
Horas Teóricas: 1	Horas Prácticas: 4	Horas Laboratorio: 0						
Horas de otras actividades: 0								

Docente Responsable	Andrés Sepúlveda
Docente Colaborador	
Comisión Evaluación	
Duración (semanas)	15
Fecha: 28/01/2016	Aprobado por: AS

II. - DESCRIPCIÓN

Asignatura de nivel intermedio y de carácter aplicado que enseña el uso de un modelo numérico para simular la dinámica de la atmósfera, analizando tanto los datos de entrada como la validación y limitaciones de los resultados.

Esta asignatura aporta a las siguientes competencias del perfil de egreso del Geofísico:

- 1. Analizar datos geofísicos.
- 2. Investigar.
- 3. Manejar y programar software.
- 4. Comunicar en forma oral y escrita, según las exigencias laborales

III.- RESULTADOS DE APRENDIZAJE ESPERADOS

Se espera que al terminar la asignatura con éxito los estudiantes sean capaces de:

- R1. Identificar los elementos de un modelo numérico de la atmósfera.
- R2. Seleccionar los parámetros para modelar una región.
- R3. Preparar la información necesaria para una simulación de la atmósfera.
- R4. Aplicar un modelo numérico de la atmósfera (e.g. WRF).
- R5. Evaluar los resultados de una simulación de la atmósfera.
- R6. Analizar críticamente simulaciones numéricas de la atmósfera.

IV.- CONTENIDOS

- 1. Métodos de Validación
- 2. Introducción a la modelación numérica.
- 3. Estructura de modelos numéricos.
- 4. Parametrizaciones físicas.
- 5. Herramientas de pre- y post- procesamiento.
- 6. Forzamiento atmosférico.
- 7. Validación de modelos numéricos.
- 8. Acoplamiento Océano Atmósfera.
- 9. Casos idealizados.
- 10. Simulaciones Históricas.
- 11. Predicción atmosférica

V.- METODOLOGÍA

Esta asignatura se desarrolla en base a una hora de clases teóricas, cuatro horas semanales de sesiones usando computadores. Cada estudiante desarrollará un proyecto sobre un tema asignado, del cual hará una presentación y un informe sobre este. Un tercio del curso será dictado en inglés, y las actividades de este periodo, tareas, informes, presentaciones, serán en inglés.

VI.- EVALUACIÓN

- 1. Una evaluación escrita obligatoria (E1)
- 2. Promedio tareas (PT) Inglés
- 3. Presentación artículo (PA) Inglés
- 3. Presentación de proyecto (PP) Inglés
- 4. Entrevista oral (EO)

El proyecto consistirá en realizar ejercicios de simulación asignados a una región específica del país. Las tareas serán ejercicios de modelación aplicados a su región de estudio.

La nota final (NF) se calculará de la siguiente forma:

Los alumnos con NF < 4 tendrán derecho a una evaluación de recuperación. En ese caso la nota final será

NF= (Nota de Presentación)*.6+(Nota Evaluación de Recuperación)*.4

VII.- BIBLIOGRAFÍA Y MATERIAL DE APOYO

Básica

- Kalnay, E. (2003). Atmospheric modeling, data assimilation, and predictability. Cambridge University Press. ISBN 0521796296.
- 2. Warner, T.T. (2010). Numerical weather and climate prediction. Cambridge University Press. ISBN-10: 0521513898

Complementaria

- 1. Stensrud, D.J. (2009). Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press. ISBN: 9780521126762
- 2. Curso Introducción a la Modelación Atmosférica. Sitio Web: http://kiwi.atmos.colostate.edu/group/dave/at604.html
- 3. Developmental Testbed Center (http://www.dtcenter.org/)
- 4. Sitio web oficial del modelo WRF (http://www.wrf-model.org/index.php)
- 5. Sitio web oficial del modelo CALPUFF (http://www.wrf-model.org/index.php)
 - 6. Guía para el Uso de Modelos de Calidad del aire en el SEIA. Servicio de Evaluación Ambiental (2012). http://www.sea.gob.cl/sites/default/files/guias /Guia uso modelo calidad del aire seia.pdf
- 7. Servicio de Evaluación Ambiental (http://www.sea.gob.cl/contenido/metodologiamodelo)

IX. - OTROS

Semana	Resultados de Aprendizaje	Contenidos	Actividades	Horas de Trabajo Presencial	Horas de Trabajo Autónomo	Evaluación	Responsable
1	R1,R4,R5	1)Introducción, Syllabus, Coordinación 2)Qué esperan, qué les interesa. 3)Historia Modelación Numérica. 4)WRF/BRAMS/ MM5/Eta /ECMWF/CalMet	Instalación del modelo PPT profesor	5	5	Actividad de retroalimentación.	Profesor
2	R1,R2,R3,R5	1)Descripción del curso. 2)Ejemplo de configuración 3) Estructura WRF 4)Obtención de cuenta FNL	Presentación profesor. Ejercicios en computador.	5	5	Revisión ejercicios. Actividad de retroalimentación.	Profesor y alumno
3	R1,R4,R5	1)Lanzar 1ra sim 2) Visualizacion resultados 1ra sim.	Ejercicios en computador. Presentación del profesor.	5	5	Revisión computador. Revisión ejercicios. Actividad de retroalimentación.	Profesor y alumno
4	R4,R5	Simulaciones de eventos. Índices de predictibilidad Validación	Ejercicios en computador. Presentación del profesor.	5	5	Revisión ejercicios. Actividad de retroalimentación.	Alumno y profesor
5	R2,R5,R6	1)Postprocesamien nto:	Presentación de alumno. Ejercicios en computador.	5	5	Pauta Participación. Actividad de	Alumno y Profesor

		grads,NCL, Python 2) Coord. Vert Z- Pres-Niveles	Presentación del profesor.			retroalimentación.		
6	R2,R3,R4,R5 ,R6	1)Cambio niveles verticales 2) Series de tiempo CB/CI:GFS, ERA_Inter, FNL, CFSR	Presentación de alumno. Ejercicios en computador. Presentación del profesor.	5	5	Pauta Participación. Actividad de retroalimentación.	Alumno Profesor	у
7	R2	Parametrizaciones Físicas	Presentación del profesor.	5	5	Test practico con informe escrito. Actividad de retroalimentación.	Alumno Profesor	У
8	R2,R6	1) Cambio Parametrizaciones físicas 2) Pronostico y Simulaciones Históricas	Presentación de alumno. Ejercicios en computador. Presentación del profesor.	5	5	Pauta Participación. Actividad de retroalimentación.	Alumno Profesor	У
9	R3,R4	1)Práctica Simulación Histórica 2) Script Pronostico 3) Ensambles Topografía	Ejercicios en computador. Presentación del profesor.	5	5	Actividad de retroalimentación.	Alumno Profesor	У
10	R3,R4,R6	1) Práctica uso ensambles condiciones iniciales 2) Acoplamiento Océano-Atmósfera	Presentación de alumno. Ejercicios en computador. Presentación del profesor.	5	5	Pauta Participación. Revisión ejercicios. Actividad de retroalimentación.	Alumno Profesor	у
11	R1	Instalación	Uso de computador	5	5	Revisión computador.	Profesor	

		CALPUFF - CALWRF				Actividad de retroalimentación.		
12	R2	Intro CALPUFF	Presentación del profesor.	5	5	Test práctico con informe escrito. Actividad de retroalimentación.	Alumno Profesor	у
13	R3,R4,R6	1) Práctica CALPUFF 2) Intro CALPUFF	Presentación de alumno. Ejercicios en computador. Presentación del profesor.	5	5	Pauta Participación. Revisión ejercicios. Actividad de retroalimentación.	Alumno Profesor	У
14	R4,R6	Práctica CALPUFF Revisión CALPUFF	Ejercicios en computador. Presentación del profesor.	5	5	Revisión ejercicios. Actividad de retroalimentación.	Alumno Profesor	У
15	R5,R6	Presentación Informes Resumen Curso	Presentación de alumno. Presentación del profesor.	5	5	Pauta Presentaciones Orales. Actividad de retroalimentación.	Alumno Profesor	у
16	R1,R2,R3,R4 ,R5,R6	Entrevistas Orales	Ejercicio en computador. Entrevista oral.	1	5	Pauta Presentaciones Orales.	Alumno	
17	R1,R2,R3,R4 ,R5,R6	Evaluación de Recuperación		2	0	Pauta Evaluación	Alumno99)